Products of binomial coefficients and unreduced Farey fractions
نویسندگان
چکیده
منابع مشابه
PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p 2
As usual Z, Q, R and C denote the ring of integers, the rational field, the real field and the complex field respectively. We also let Z = {1, 2, 3, · · · } and C∗ = C \ {0}. For a ∈ Z and n ∈ Z, by (a, n) we mean th greatest common divisor of a and n, if n is odd then the Jacobi symbol ( a n ) is defined in terms of Legendre symbols (see, e.g. [IR]). For x ∈ R, [x] and {x} stand for the integr...
متن کاملThe Correlations of Farey Fractions
We prove that all correlations of the sequence of Farey fractions exist and provide formulas for the correlation measures.
متن کاملNeighboring Fractions in Farey Subsequences
We present explicit formulas for computation of the neighbors of several elements in Farey subsequences.
متن کاملProducts and Sums Divisible by Central Binomial Coefficients
In this paper we study products and sums divisible by central binomial coefficients. We show that 2(2n+ 1) ( 2n n ) ∣∣∣∣ (6n 3n )( 3n n ) for all n = 1, 2, 3, . . . . Also, for any nonnegative integers k and n we have ( 2k k ) ∣∣∣∣ (4n+ 2k + 2 2n+ k + 1 )( 2n+ k + 1 2k )( 2n− k + 1 n ) and ( 2k k ) ∣∣∣∣ (2n+ 1)(2n n ) Cn+k ( n+ k + 1 2k ) , where Cm denotes the Catalan number 1 m+1 ( 2m m ) = (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2016
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042116500044